R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。那么R语言有什么特点呢?
一、特点
R作为一种统计分析软件,是集统计分析与图形显示于一体的。它可以运行于UNIX、Windows和Macintosh的操作系统上,而且嵌入了一个非常方便实用的帮助系统,相比于其他统计分析软件,R还有以下特点:
1.R是自由软件。这意味着它是完全免费,开放源代码的。可以在它的网站及其镜像中下载任何有关的安装程序、源代码、程序包及其源代码、文档资料。标准的安装文件自身就带有许多模块和内嵌统计函数,安装好后可以直接实现许多常用的统计功能。
2.R是一种可编程的语言。作为一个开放的统计编程环境,语法通俗易懂,很容易学会和掌握语言的语法。而且学会之后,我们可以编制自己的函数来扩展现有的语言。这也就是为什么它的更新速度比一般统计软件,如SPSS、SAS等快得多。大多数最新的统计方法和技术都可以在R中直接得到。
3. 所有R的函数和数据集是保存在程序包里面的。只有当一个包被载入时,它的内容才可以被访问。一些常用、基本的程序包已经被收入了标准安装文件中,随着新的统计分析方法的出现,标准安装文件中所包含的程序包也随着版本的更新而不断变化。在另外版安装文件中,已经包含的程序包有:ba
4.R具有很强的互动性。除了图形输出是在另外的窗口处,它的输入输出窗口都是在同一个窗口进行的,输入语法中如果出现错误会马上在窗口中得到提示,对以前输入过的命令有记忆功能,可以随时再现、编辑修改以满足用户的需要。输出的图形可以直接保存为JPG、BMP、PNG等图片格式,还可以直接保存为PDF文件。另外,和其他编程语言和数据库之间有很好的接口。
5.如果加入R的帮助邮件列表一,每天都可能会收到几十份关于R的邮件资讯。可以和全球一流的统计计算方面的专家讨论各种问题,可以说是全世界最大、最前沿的统计学家思维的聚集地。
R是基于S语言的一个GNU项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。R的使用与S-PLUS有很多类似之处,这两种语言有一定的兼容性。S-PLUS的使用手册,只要稍加修改就可作为R的使用手册。所以有人说:R,是S-PLUS的一个"克隆"。
但是请不要忘了:R是免费的(R is free)。R语言源代码托管在github,具体地址可以看参考资料。
R语言的下载可以通过CRAN的镜像来查找。
R语言有域名为.cn的下载地址,有六个,其中两个由Datagurn,由中国科学技术大学提供的。R语言Windows版,其中由两个下载地点是Datagurn和USTC提供的。
二、功能
R是一套完整的数据处理、计算和制图软件系统。其功能包括:数据存储和处理系统;数组运算工具(其向量、矩阵运算方面功能尤其强大);完整连贯的统计分析工具;优秀的统计制图功能;简便而强大的编程语言:可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。
与其说R是一种统计软件,还不如说R是一种数学计算的环境,因为R并不是仅仅提供若干统计程序、使用者只需指定数据库和若干参数便可进行一个统计分析。R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。
该语言的语法表面上类似C,但在语义上是函数设计语言(functional programming language)的变种并且和Lisp以及APL有很强的兼容性。特别的是,它允许在"语言上计算"(computing On the language)。这使得它可以把表达式作为函数的输入参数,而这种做法对统计模拟和绘图非常有用。
R是一个免费的自由软件,它有UNIX、LINUX、MacOS和WINDOWS版本,都是可以免费下载和使用的。在那儿可以下载到R的安装程序、各种外挂程序和文档。在R的安装程序中只包含了8个基础模块,其他外在模块可以通过CRAN获得。
R的源代码可自由下载使用,亦有已编译的执行档版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacOS。 R主要是以命令行操作,同时有人开发了几种图形用户界面。
R内建多种统计学及数字分析功能。因为S的血缘,R比其他统计学或数学专用的编程语言有更强的物件导向(面向对象程序设计)功能。
R的另一强项是绘图功能,制图具有印刷的素质,也可加入数学符号。
虽然R主要用于统计分析或者开发统计相关的软体,但也有人用作矩阵计算。其分析速度可媲美GNU Octave甚至商业软件MATLAB。
R的功能能够通过由用户撰写的套件增强。增加的功能有特殊的统计技术、绘图功能,以及编程界面和数据输出/输入功能。这些软件包是由R语言、LaTeX、Java及最常用C语言和Fortran撰写。下载的执行档版本会连同一批核心功能的软件包,而根据CRAN纪录有过千种不同的软件包。其中有几款较为常用,例如用于经济计量、财经分析、人文科学研究以及人工智能。
R语言环境
R是一套由数据操作、计算和图形展示功能整合而成的套件。包括:有效的数据存储和处理功能,一套完整的数组(特别是矩阵)计算操作符,拥有完整体系的数据分析工具,为数据分析和显示提供的强大图形功能,一套(源自S语言)完善、简单、有效的编程语言(包括条件、循环、自定义函数、输入输出功能)。
在这里使用"环境"(environment)是为了说明R的定位是一个完善、统一的系统,而非其他数据分析软件那样作为一个专门、不灵活的附属工具。
R很适合被用于发展中的新方法所进行的交互式数据分析。由于R是一个动态的环境,所以新发布的版本并不总是与之前发布的版本完全兼容。某些用户欢迎这些变化因为新技术和新方法的所带来的好处;有些则会担心旧的代码不再可用。尽管R试图成为一种真正的编程语言,但是不要认为一个由R编写的程序可以长命百岁。
R与统计
在我们对R语言环境的介绍中并没有提到统计,不过很多人都把R作为一个统计系统来使用。我们倾向于把它当作环境,使得经典和现代统计技术在其中得到应用。一部分已经被内建在基本的R语言环境中,但是更多的是以包的形式提供的。由8个包是随着R一同提供的(称作标准包),其它的可以通过CRAN的成员网站获得。
通过R可以使用绝大多数的经典或者最新的统计方法,不过用户需要花一些功夫来找出这种方法。
S(和R)与其他主流的统计系统在本质上有一个很重要的不同。在S中,统计分析通常由一系列的步骤完成,同时将交互的结果存储在对象中。所以,尽管SAS和SPSS在一个回归或者判别分析中会给出丰富的输出结果,R只是给出一个最小的输出,而将结果保存在一个适当的对象中由R函数进行后续查询。
R与视窗系统
使用R最便捷的方式是在一个运行视窗系统的图形工作站上。这份指南就是为拥有这项便利的用户准备的。尽管我们绝大部分的内容都是来讲R环境的一般应用,我们还是会时不时的提到R在Xwindow系统下的应用。
与操作系统的直接互动对多数用户来说都是必要的。在这份指南中我们主要讨论在UNIX系统下的互动,所以Windows下的R用户需要做出一些小的调整。
对工作站的定制是一项直接而有效但又单调乏味的过程,在这里我们并不会作更深入的讨论。如果您在这方面遇到了困难可以向你身边的专家寻求帮助。
三、R包及其使用
R包介绍
R语言的使用,很大程度上是借助各种各样的R包的辅助,从某种程度上讲,R包就是针对于R的插件,不同的插件满足不同的需求。例如用于经济计量、财经分析、人文科学研究以及人工智能。
安装包
1、通过选择菜单:
程序包->安装程序包->在弹出的对话框中,选择你要安装的包,然后确定。
2、使用命令
install.packages("package_name","dir")
package_name:是指定要安装的包名,请注意大小写。
dir:包安装的路径。默认情况下是安装在..\library 文件夹中的。可以通过本参数来进行修改,来选择安装的文件夹。
3、本地来安装
如果你已经下载的相应的包的压缩文件,则可以在本地来进行安装。请注意在windows、unix、macOS操作系统下安装文件的后缀名是不一样的:
1)linux环境编译运行:tar.gz文件
2)windows 环境编译运行 :.zip文件
3)MacOS环境编译运行:.tgz文件
加载包
包安装后,如果要使用包的功能。必须先把包加载到内存中(默认情况下,R启动后默认加载基本包),加载包命令:
Library("包名")
Require("包名")
查看包的相关信息
1、查看包帮忙
library(help="package_name")
主要内容包括:例如:包名、作者、版本、更新时间、功能描述、开源协议、存储位置、主要的函数
help(package = "package_name")
主要内容包括:包的内置所有函数,是更为详细的帮助文档
2、查看当前环境哪些包加载
find.package() 或者 .path.package()
3、移除包出内存
detach()
4、把其它包的数据加载到内存中
data(dsname, package="package_name")
5、查看这个包里的包有数据
data( package="package_name")
6、列出所有安装的包
library()